Pergamon Journals Ltd.

THE SELECTIVITY OF ISOPROPYLIDENECARBENE

Yitzhak Apeloig,^{*a} Miriam Karni,^a Peter J. Stang^{*b} and Stephen B. Christensen,^b Departments of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel,^a University of Utah, Salt Lake City, Utah 84112, U.S.A.

Abstract: A simple FMO treatment of the selectivity of $(CH_3)_2C=C$:, using calculated orbital energies and neglecting orbital overlap, predicts ambiphilic behavior, in exact analogy with the known ambiphilicity of MeOCCL. Experimental evidence indicates only electrophilic selectivity. A more complete treatment, including orbital overlap, also predicts electrophilic behavior. The failure of the simple theoretical model might result from an "early" transition state geometry for addition, as a result of only slight stabilization of unsaturated carbenes by most substituents.

The exact nature of a reactive intermediate governs its chemical behavior and reactivity. Carbenes may be electrophilic, E, nucleophilic, N, or ambiphilic, A. An ambiphilic carbene acts as an electrophile towards electron-rich alkenes and as a nucleophile towards electron-poor olefins. This spectrum of behavior of carbenes is rationalized within the framework of frontier molecular orbital theory (FMO). 1 Thus, for an electrophilic carbene the dominant interaction is between the vacant carbene p-orbital (2p(C:), LUMO) and the filled alkene π -orbital (HOMO), and for a nucleophilic carbene it is between the filled carbene $\sigma(sp(C:), HOMO)$ and the vacant alkene π^* (LUMO).¹ The degree of interaction arising from a given frontier orbital interaction (ΔE) depends (eq. 1) on both, the extent of orbital overlaps and the differential orbital energies, $\Delta \varepsilon$, where $\Delta E = (S_{HOMO-L,UMO})^2 / (\varepsilon_{HOMO} - \varepsilon_{L,UMO})$ (eq. 1). Neglecting orbital overlap the stabilization of the interaction is inversely proportional to $\Delta \epsilon$.

Using known experimental orbital energy values for a set of standard alkenes and styrenes¹ and calculated values (4-31G) for the carbenes, the Table shows the orbital energy differences $[(E = \Delta \varepsilon (2p(C;) - \pi), N = -\Delta \varepsilon (sp(C;) - \pi^*)]$ for three carbenes: $Cl_2C;$, MeOCCl¹ and Me₂C=C: (calculations performed in this work).

As seen from the data (Table) this, simple but effective, FMO treatment developed by Moss, Houk et al.¹ elegantly and accurately predicts the actual experimental behavior of both the electrophilic Cl₂C: and the ambiphilic MeOCCl. In other words, for Cl₂C: the dominant interaction is exclusively electrophilic towards all olefins, whereas for MeOCC1 the interaction switches from a dominant electrophilic one with electron-rich olefins to a dominant nucleophilic one with electron-poor olefins, in perfect accord with experiment.

Moss and Houk's treatment of carbene philicity was supported by more recent studies and gained wide acceptance.² It was of interest therefore to test this simple FMO treatment on alkylidenecarbenes, species of considerable current interest and activity.³ Calculations⁴ gave the FMO energies (at 4-31G//STO-3G) of (CH₃)₂C=C: as 2.82 eV (LUMO) and -11.48 eV (HOMO). Use of these values allow the determination, in complete analogy to the Moss procedure, of the required differential orbital energies of CH₂C=C: with the same olefins, and these are also summarized in the Table. As these data indicate $(CH_3)_2C=C$: is predicted to be ambiphilic with very similar selectivity to that of MeOCC1. In fact even the olefins at which the dominant interactions switch from E to N are predicted to be the same: methyl acrylate and p-chlorostyrene.

6115

To test this prediction relative reactivities were determined for the standard olefins in the Table, by the usual techniques.^{1,3}

Alkene ^a Carbene			Cl ₂ C: ^a		T	Me OCC1 ^a			Me ₂ C=C: ^{b,c}		
1	ł	Ē	N	^k rel.	!	Ē	N	^K rel.	E	N	K _{rel} ,
Me ₂ C=CMe ₂	ł	8.6	13.7	78.4	ł	10.7	13.1	12.6	<u>11.1</u>	13.8	0.16
Me ₂ C=CH ₂	ł	9.6	13.6	4.9	ł	11.7	13.0	5.4	12.1	13.7	0.60
t-MeCH=CHMe	ł	9.4	13.5	1.00	ł	<u>11.3</u>	12.9	1.0	11.9	13.6	1.00
¦ CH ₂ =CHCO ₂ Me	ł	11.0	12.2	0.06	i	13.2	11.6	29.7	13.5	12.3	0.18
¦ CH ₂ ≠CHCN	ł	11.2	11.6	0.05	ł	13.4	11.0	54.6	13.7	11.7	
X-C6H4CH=CH2a	ł	E	N	^k rel.	ł	E	N	Krel.	E	N	Krel.
X = p-MeO	i	8.05	11.92	3.3	ł	10.20	11.30	1.50	10.56	11.96	1.51
p-Me	ł	8.51	11.78	1.7	ł	10.66	11.16	1.07	11.02	11.82	1.28
H H	ł	8.74	11.69	1.0	ł	10.89	11.07	1.00	11.25	11.73	1.00
p-C1	i	9.21	11.17	0.8	ł	11.36	10.55	1.04 ^d	11.72	11.21	0.63
m-NO2	ł	9.42	11.10	0.46	ì	11.57	10.48	1.27	11.93	<u>11.14</u>	

Table:Differential Orbital Energies for Carbene-Alkene and Carbene-Styrene Interactions(in eV) and Relative Rates of Addition.

^a Using the energies in ref. 1; ^b This work; ^c Part of experimental data from: D.P. Fox, J.A. Bjork and P.J. Stang, <u>J. Org. Chem.</u>, <u>48</u>, 3994 (1984) and P.J. Stang, J.R. Madsen, M.G. Mangum, and D.P. Fox, <u>ibid</u>, <u>42</u>, 1820 (1977); ^d For the m-Cl.

Unfortunately, the known modes of alkylidenecarbene generation (most involve a base or at least F^{-})³ polymerize CH₂=CHCN and p-0₂NC₆H₄CH=CH₂ and hence no rates could be determined for these substrates. Moreover, as expected, because of the great steric demands of alkylidene-carbene/olefin interactions⁵ electron-rich, but hindered olefins, such as Me₂C=CMe₂ and Me₂C=CH₂, react slower than they should based upon electronic factors alone.³ Nevertheless, the available data clearly contradict these simple FMO predictions. Specifically, unlike the <u>A</u>-MeOCCl, where the switch in the dominant interaction from <u>E</u> to <u>N</u> is accompanied by a thirty-fold increase in relative reactivity, from <u>t</u>-2-butene to methyl acrylate, with (CH₃)₂C=C: this change in olefin results in a six-fold decrease in relative reactivity,⁶ comparable to the selectivity of the electrophilic Cl₂C:. Likewise, MeOCCl shows a clear <u>A</u>-behavior with substituted styrenes, with a Hammett plot resembling a flattened parabola, but (CH₃)₂C=C: shows a classic <u>E</u>-behavior with a good linear Hammett correlation (ρ =-0.75, r=0.997), again resembling the known <u>E</u>-selectivity of Cl₂C:.¹ Using 6,6-dimethylfulvene as an indicator substrate Moss <u>et al.</u> have also concluded that (CH₃)₂C=C: is electrophilic.⁷

Why does the simple FMO treatment¹ work for normal carbenes but fails for alkylidene carbenes?⁸ Apparently, in the alkylidenecarbene-olefin interactions the numerator in eq. 1, i.e., the orbital overlaps, control the selectivity overriding the opposing orbital energy effect, in contrast to the comparable carbene-olefin interactions. Indeed, a more complete FMO

treatment, following Rondan, Houk and Moss (RHM),⁹ which includes orbital overlaps, predicts (CH₃)₂C=C: to be electrophilic not ambiphilic - in agreement with the available experimental results. Thus, the "philicity index", PI, was calculated according to the RHM formula (eq. 1 in ref. 9), using ΔE_{stab} of -37.0 kcal.mol⁻¹ (4-31G), where ΔE_{stab} is given by: $H_2C: + (CH_3)_2C=CH_2 \longrightarrow H_4C + (CH_3)_2C=C:$. We calculate PI=0.68, ¹⁰ a value typical for electrophilic carbenes (e.g., PI=0.85 for $: CF_2^9$). The electrophilic orbital overlap apparently dominates the interaction, even when opposed by a nucleophilic orbital energy difference. Note, that ΔE_{stab} for (CH₂)₂C=C: is relatively low, in the range typical for electrophilic carbenes (e.g., $\Delta E_{stab} = 29.3 \text{ kcal.mol}^{-1}$ for ClCCH₃⁹), and significantly lower than for ambiphilic or nucleophilic carbenes (e.g. $\Delta E_{stab} = 83.0 \text{ kcal.mol}^{-1}$ for ((HO)₂C:).⁹ Low ΔE_{stab} suggests a highly exothermic cycloaddition reaction and an "early" transition state, as we indeed calculate for CH2=C: + H2C=CH2, (steric effects also contribute to this "early" transition state^{5a}), where the shortest intermolecular C-C distance is 1.94 Å at STO-3G, 5^{a} (e.g., 1.96 Å for Cl₂C:⁹). Rondan et al. found that "early" transition states involve more electrophilic character than "late" transition states⁹ and this can be used to rationalize the failure of the FMO energy criterion for $(CH_2)_2$ C=C: in contrast to its success with regular carbenes. Houk has noted a similar behaviour for ClCCH₃, FCPh and ClCSCH₃; these carbenes are predicted to be ambiphilic on the basis of the FMO energies, but electrophilic when overlap is included. 9

The use of other calculated criteria, following RHM's criteria and terminology,⁹ to predict the "philicity" of $(CH_3)_2C=C$: also leads to ambiguous results. Criteria which use the geometry of the cycloaddition transition state point clearly to an electrophilic carbene (we use the $CH_2=CH_2+H_2C=C$: transition structure^{5a}). Thus: (1) The ratio of the newly forming bond lengths, $r_{12}/r_{23} = 1.19$ (1.18 for CI_2C :⁹). (2) The tilt angle of the carbene with respect to the original ethylene plane is $\zeta=35.6^{\circ}$ (36° for CI_2C :⁹). (3) The angle of distortion away from planarity of the ethylene B-CH₂ group is B=13.2^o (13.9^o for CI_2C :⁹). Calculations of the "carbene selectivity index", m, using RHM's equation: m=[0.035 ΔE_{stab} -0.449⁹], gives m[(CH_3)₂C=C:]=0.85 (0.97 for CI_2C :⁹). On the other hand, the calculated "charge-transfer", q, from ethylene to $H_2C=C$: is 14x10⁻² electrons, a value typical for ambiphilic carbenes (q=10x10⁻² and 29x10⁻² electrons for HOFC: and Cl₂C: respectively⁹).

Can ambiphilic or nucleophilic alkylidenecarbenes be generated? To achieve this goal one should significantly stabilize the carbene (i.e., increase ΔE_{stab}), and push up the energies of its HOMO and LUMO. This is more difficult to achieve with alkylidenecarbenes because substituents influence their stabilities and orbital energies to a smaller extent than they do for normal carbenes.¹¹ However, this goal **may be** achieved with strongly hyperconjugating groups such as Me₃Si. For, (H₃Si)₂C=C: we calculate (3-21G), $\Delta E_{stab} = -58 \text{ kcal.mol}^{-1}$, PI= 1.0, HOMO=-11.98 eV, LUMO=2.60 eV.¹² Similarly, the strong charge polarization towards the carbenic carbon lead us to suggest that D = C: might be an ambiphilic or even a nucleophilic carbene.¹³

Acknowledgments.

This research was supported by a U.S.-Israel Binational Science Foundation (BSF) grant in Israel and by the NSF (CHE 84-19099) and the PRF (administered by the ACS) at Utah. PJS also wishes to express his gratitude to the Lady Davis Foundation for a Visiting Professorship at the Technion that greatly facilitated this collaboration.

References and Notes

- 1. R.A. Moss, Acc. Chem. Res., 13, 58 (1980).
- E.g.; (a) M.P. Doyle, J.W. Terpstra and C.H. Winter, <u>Tetrahedron Lett.</u>, 901 (1984); (b) M. Moreno, J.M. Lluch, A. Oliva, and J. Bertran, <u>J. Chem. Soc.</u>, <u>Perkin Trans. II</u>, 183 (1986); <u>Chem. Phys.</u>, 100, 33 (1985); (c) W.W. Schoeller, N. Aktekin and H. Friege, <u>Angew. Chem.</u> <u>Int. Ed.</u>, 21, 932 (1982); W.W. Schoeller, <u>ibid.</u>, 20, 698 (1981); (d) S.-I. Murahashi, K. Okumura, T. Naota, and S. Nagase, <u>J. Am. Chem. Soc.</u>, 104, 2466 (1982); (e) H. Tomioka, K. Ohno, Y. Izawa, R.A. Moss, and R.C. Munjal, <u>Tetrahedron Lett.</u>, 5415 (1984); (f) R.A. Moss, W. Guo and K. Krogh-Jespersen, <u>Tetrahedron Lett.</u>, 15 (1982); (g) R.A. Moss and L.A. Perez, <u>ibid.</u>, 2719 (1983); (h) R.A. Moss, W. Guo, D.Z. Denney, K.N. Houk, and N.G. Rondan, <u>J. Am.</u> <u>Chem. Soc.</u>, 103, 6164 (1981).
- 3. Reviews: P.J. Stang, Acc. Chem. Res., 15, 348 (1982), Chem. Rev., 78, 383 (1978).
- 4. The Gaussian 80 series of programs was used: J.S. Binkley, R.A. Whiteside, R. Krishnan, R. Seeger, D.J. DeFrees, H.B. Schlegel, S. Topiol, L.R. Kahn and J.A. Pople, <u>QCPE</u>, <u>13</u>, 406 (1980).
- 5. (a) Y. Apeloig, M. Karni, P.J. Stang, and D.P. Fox, <u>J. Am. Chem. Soc.</u>, <u>105</u>, 4781 (1983);
 (b) D.P. Fox, P.J. Stang, Y. Apeloig, M. Karni, J. Am. chem. Soc., 108, 750 (1986).
- 6. Reactions were carried out at -20^oC, significantly lower than the common isoselective temperatures of carbenes, see: B. Giese, <u>Acc. Chem. Res.</u>, <u>17</u>, 438 (1984). This factor is important because the FMO analysis does not account for entropy effects.
- 7. R.A. Moss, C.M. Young, L.A. Perez, and K. Krogh-Jespersen, <u>J. Am. Chem. Soc.</u>, <u>103</u>, 2413 (1981).
- 8. On the other hand, extended unsaturated carbones are predicted, in agreement with experiment,³ to be electrophilic. For example with $H_2C=C=C:$, $E \le N$ for both $(CH_3)_2C=C(CH_3)_2$, E=8.90, N=14.1; and $H_2C=CHCN$, E=11.5, N=12.1 (4-31G, eV).
- 9. N.G. Rondan, K.N. Houk and R.A. Moss, J. Am. Chem. Soc., 102, 1770 (1980).
- 10. We have evaluated PI via ΔE_{stab} rather than by a direct calculation of the nucleophilic and electrophilic orbital overlaps because of ambiguities regarding the procedure for their direct evaluation. Our calculations for Cl_2C : $+H_2C=CH_2$ gave $S_E=0.144$ and $S_N=0.021$ compared with $S_E=0.131$ and $S_N=0.095$ reported by Rondan et al.⁹ The differences between our and Rondan's⁹ calculations may result from our use of Gaussians in place of Slatter orbitals, different procedures for separation of the orbital overlaps into σ and π components, etc.
- 11. Y. Apeloig and R. Schreiber, Tetrahedron Lett., 4555 (1978).
- Recently, (Me₃Si)₂C=C: was generated by thermolysis: R.W. Hoffmann, <u>Acc. Chem. Res.</u>, <u>18</u>, 248 (1985).
- 13. Y. Apeloig, R. Schrieber and P.J. Stang, <u>Tetrahedron Lett.</u>, 411 (1980). (Received in UK 28 July 1986)